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The optimal shape and parameter search during the design of an electromagnetic machine is a nonlinear, multivariable and 

multimodal optimization problem that incurs a great deal of computation time when calculating electromagnetic fields. To overcome 

these problems effectively, this paper proposes a new evolutionary multimodal optimization algorithm based on the Big Bang-Big 

Crunch method and aided by a surrogate model using the theory of compressed sensing. Its efficiency is demonstrated by assessing the 

optimization results for test functions. Moreover, to evaluate the feasibility of its application to an electromagnetic problem, a 

permanent magnet machine is designed using the proposed algorithm. The obtained results confirm that the proposed method is more 

effective and efficient than other existing approaches. 
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I. INTRODUCTION 

N THE AREA of electromagnetic machine design, there are 

many design parameters to be determined, and their 

nonlinear behaviors must be considered as well to obtain 

reliable results. Furthermore, given that the structures of up-

to-date electromagnetic machines are more complex than 

those of traditional machines, more accurate electromagnetic 

field analysis methods, such as 3D FEM, are needed. 

Therefore, electromagnetic machine designs are highly 

nonlinear, multivariable and multimodal optimization 

problems. Moreover, the actual computation time and costs 

associated with optimization increase significantly depending 

on the number of objective function evaluations [1]. 

To find effective solutions to such problems, it is often 

desirable to obtain not only the global optimum but also the 

local optima because various solutions provide insight into the 

nature of the target space and suggest alternative solutions 

under limited conditions [2]. This makes multimodal 

optimization the most feasible approach to solve these problems. 

In recent years, many multimodal optimization algorithms 

based on evolutionary algorithms have been widely studied 

[3]-[4]. Most conventional evolutionary optimization 

algorithms, such as genetic algorithms, evolutionary strategies, 

and particle swarm optimization methods, find only a single 

global solution in what is known as a genetic drift. To solve 

this problem, many practical studies involving modifications 

of evolutionary algorithms have been done to find multiple 

solutions to multimodal optimization problems [5]-[6]. 

The Big Bang-Big Crunch (BB-BC) algorithm has been 

recently introduced as a new heuristic search algorithm which 

relies on the theory of the evolution of the universe [7]. 

Because the BB-BC algorithm has a low computational cost 

and a high convergence speed, it is very efficient when the 

number of optimization parameters is high. The BB-BC 

method has shown good performance in actual engineering 

optimization problems [8]-[9]. 

Unfortunately, like other evolutionary algorithms, the BB-

BC algorithm tends to converge towards the global optimum 

solution. Therefore, the standard BB-BC algorithm cannot 

simultaneously search for multiple solutions to multimodal 

problems. Thus far, research to develop a BB-BC algorithm to 

handle multimodal optimization problems has not been 

conducted. This paper deals with this problem, with several 

modifications applied to the standard BB-BC algorithm. 

In this paper, we propose a new multimodal optimization 

algorithm based on the BB-BC algorithm and assisted by a 

surrogate model using compressed sensing (CS) theory. We use 

a surrogate model to determine the niche and its niche radius 

adaptively. The proposed algorithm reduces the computation 

time and cost significantly by eliminating the need for a large 

number of function evaluations, and the niche radius is 

adjusted adaptively according to the optimization results. 

II. BRIEF OVERVIEW OF THE BB-BC ALGORITHM 

The BB-BC algorithm consists of two main steps. The first 

step is the Big Bang phase, where candidate solutions are 

randomly distributed over the search space, and the next step 

is the Big Crunch phase, where a contraction procedure 

calculates a center of mass for the population [7]-[8]. 

The BB-BC algorithm can be summarized by the pseudo-

code in Fig. 1. 

 
Fig. 1. Pseudo-code of the BB-BC algorithm. 

III. PROPOSED ALGORITHM 

In this research, we propose a new multimodal BB-BC 

optimization algorithm assisted by a surrogate model using CS 

theory. Generally, in multimodal optimization algorithms, it is 

very difficult to determine a niche radius parameter which 

determines the size of the niche or species. Here, to ascertain 

the niche and its niche radius adaptively, we construct a 
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surrogate model from selected samples and then find the peaks. 

The BB-BC algorithm is also utilized restrictively in the 

region within its niche radius. 

The detailed process of the proposed algorithm is as follows. 

Step 1—Generation of Initial Samples:   

Generate initial samples randomly in the predefined search 

space and calculate their fitness function values. 

Step 2—Construction of the Surrogate Model using CS:   

Surrogate models are able to estimate approximately real 

objective functions. The spatial distribution on a predefined 

lattice region can be obtained through various interpolation 

methods, such as RSM and Kriging method. In this research, 

we apply a newly developed CS interpolation method. This 

interpolation method has the ability to reconstruct the 

objective function successfully with only a small number of 

selected samples. Consequently, it reduces the computational 

complexity more effectively. 

Step 3—Finding Peaks:   

In this step, the locations of local peaks are estimated on the 

points of a grid using the surrogate model. 

Step 4—Calculating the Niche Radius using the Peaks:   

The positions of the peaks in the present iteration calculated 

in step 3 are assigned as temporary niches, with each niche 

radius calculated based on the mutual distances of the peaks. 

The niche radius is determined by the Euclidian distance 

between the temporary niche and the nearest neighbor peak 

from it. 

Step 5—Checking the Change of the Peaks:  

The positions of the peaks in the present iteration calculated 

during step 3 are compared to those of the peaks one step 

behind and two steps behind the iteration. If all three step 

positions are nearly identical, the interpolation process is 

terminated and this algorithm goes to Step 10. 

Step 6—Big Crunch Phase:   

The Big Crunch is a convergence operator that has only one 

output, known as the center of mass cmx , derived from (1): 





N

i i

i

N

i i

cm
f

x
f

x
11

1
/

1                              (1) 

The Big Crunch is applied to a predefined number of 

nearest neighbor samples of each peak within its niche radius. 

The position of the peak is updated if the fitness value of the 

center of mass is larger than the fitness value of the existing 

peak for a maximization problem, which is an elitism strategy 

between the existing peak and the new center of mass. 

Step 8—Big Bang Phase:   

Create new members to be used in the next iteration step. 

Spread new offsprings 
new

ix  around the peak (center of mass) 

using (2) within its niche radius 
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where r  is a random number from a standard normal 

distribution, 
 
is the parameter limiting the size of the search 

space, and k  is the number of iterations. 

Step 9—Generation of Additional Samples:   

Predefined numbers of samples are randomly generated in 

an unoccupied region. After selecting additional samples, the 

execution of this algorithm goes back to Step 2. 

Step 10—Searching for Peaks in Detail within the Niche Radius:   

To find the precise peaks in detail, an additional peak search 

process using the BB-BC algorithm is necessary. This process 

is performed within the niche radius of each peak (niche) 

obtained in step 4. 

IV. NUMERICAL TEST AND RESULT 

To evaluate the performance of our algorithm, we applied it 

to test functions and electromagnetic machine designs. A 

detailed explanation will be presented in the full paper. Fig. 2 

shows an example. 

V.  CONCLUSION 

In this paper, a multimodal BB-BC optimization algorithm aided 

by a surrogate model using the theory of compressed sensing is 

proposed. The availability of this new algorithm is proved through 

comparisons with conventional methods, and it is applied to the 

design optimization of a permanent magnet machine. 
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Fig. 2. Optimization result on a test function. 
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